Vocab:

- waste
- • closed-loop recycling
- • bottom ash
- • municipal solid waste
- • open-loop recycling
- • fly ash
- • waste stream
- • compost
- • acid deposition
- • e-waste
- • leachate
- • hazardous waste
- • reduce
- • sanitary landfills
- • superfund
- • reuse
- • tipping fee
- • brownfields
- • recycle
- • siting
- • life-cycle analysis
- • source reduction
- • incineration
- • integrated waste management
1. What are the main sources of waste?

2. What is the relationship between the availability and access to resources and the production of waste?

3. How does the solid waste stream differ between a developed country and a developing country?

4. What are the three R's? What are the benefits and disadvantages of each

5. What is the difference between open and closed loop recycling?

6. Why is composting an important activity in waste management?

7. What are the features of a modern sanitary landfill? How does a modern landfill compare to the older practice of putting MSW in holes in the ground?
8. When and why might incineration be used instead of a landfill?

9. What are the advantages and disadvantages of landfills and incineration?

10. What is the definition of hazardous waste, and what are its main sources?

11. Why is disposal of hazardous waste a challenge?

12. Which acts authorize which agencies to regulate and oversee hazardous waste?

13. What is the life-cycle analysis and how is it useful?

14. How is holistic waste management different from other approaches to waste management?
15. What are some of the economic issues to consider when making waste disposal decisions?
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>disease</td>
<td>prions</td>
</tr>
<tr>
<td></td>
<td>epidemiology</td>
</tr>
<tr>
<td>infectious disease</td>
<td>bird flu</td>
</tr>
<tr>
<td></td>
<td>retrospective studies</td>
</tr>
<tr>
<td>chronic diseases</td>
<td>West Nile virus</td>
</tr>
<tr>
<td></td>
<td>prospective studies</td>
</tr>
<tr>
<td>acute diseases</td>
<td>neurotoxins</td>
</tr>
<tr>
<td></td>
<td>synergistic interactions</td>
</tr>
<tr>
<td>epidemic</td>
<td>carcinogens</td>
</tr>
<tr>
<td></td>
<td>routes of exposure</td>
</tr>
<tr>
<td>pandemic</td>
<td>mutagens</td>
</tr>
<tr>
<td></td>
<td>solubility</td>
</tr>
<tr>
<td>plague</td>
<td>teratogens</td>
</tr>
<tr>
<td></td>
<td>bioaccumulation</td>
</tr>
<tr>
<td>malaria</td>
<td>allergens</td>
</tr>
<tr>
<td></td>
<td>biomagnification</td>
</tr>
</tbody>
</table>
1. What are the three major categories of risk for human health? Give an example of each.

2. What is the difference between an acute and a chronic disease?

3. How is the economic development level of a country related to disease?
4. What is the difference between historical and emergent infectious diseases?

5. Which diseases that affect humans are transmitted from animals to humans?

6. What is the outlook for disease in both developing and developed nations? How is each different?

7. What are some of the beneficial ways humans use chemicals?

8. What is the impact on humans of each of the five major types of chemicals?
9. How are chemical and biological risks related?

10. Why is it difficult to test the potential effects of chemicals on humans?

11. How does the route of exposure influence toxicity? How does solubility affect exposure to chemicals?

12. In what ways are persistence and bioaccumulation similar concepts? How are they related to one another?

13. Why is risk acceptance the most complex and difficult of the three steps in risk analysis?
14. What is the difference between the innocent-until-proven-guilty principle and the precautionary principle?

15. How might the United States be resistant to the precautionary principle approach?